
LA-UR-17-30460
Approved for public release; distribution is unlimited.

Title: FLIP for FLAG model visualization

Author(s): Wooten, Hasani Omar

Intended for: Report

Issued: 2017-11-15

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

1

FLIP for FLAG model visualization

By

H. Omar Wooten
X Theoretical Design-Primary Physics (XTD-PRI)

Abstract

A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser)
provides users with an organized view of FLAG models and a means for efficiently and easily
navigating and editing nodes, parameters, and variables.

Introduction

The FLAG hydrodynamics code1 performs calculations based on models that are described in a
hierarchical database-structured input deck. The code offers users some methods to make input
decks more readable such as linking to separate files that include a set of parameters (“include”
files), and statements to relieve the user from repeatedly typing increasingly long node locations
(“mk +” and “cd” statements). Nonetheless, the free-form nature of a FLAG model’s input deck
can lead to models that are difficult to decipher and debug. For example, unlike some codes that
require materials be described together and within the same section of the input deck, FLAG
allows the user to describe materials anywhere within the input deck. Furthermore the length of
the input deck scales with the complexity of the model, and as sections of one model are re-used
in others, keeping track of the entire model can be challenging.

A new software application has been developed to provide FLAG users with a visual
environment for more efficiently managing models. FLIP (FLAG Input deck Parser) is a
graphical user interface that displays the model database in a well-organized and easy-to-
navigate environment. Figure 1 shows FLIP’s presentation of the Shape Charge Example
available in FLAG’s online documentation.

Methods and Materials

FLIP parses the model database hierarchy, imports the contents of “include” files, extracts each
node and its associated sub-nodes, variables, parameters, and presents an organized view of the
master model across three interactive panels.

Panel 1 displays an alphabetized list of the 1st, 2nd, 3rd, and 4th level nodes of the model database.
This list is convenient for verifying, for example, that the expected numbers of boundaries
(“kbdy”), regions (“kregions”), and materials (“mats”) and their names, are included in the
model as expected.

2

Figure 1. FLIP’s user interface showing the Shaped Charge Example FLAG model.

Clicking on a node in Panel 1 produces an organized list in Panel 2 of all (if any) sub-nodes
under the selected node. Clicking any sub-node in Panel 2 displays parameters and variables
associated with the selected sub-node in Panel 3. For user convenience, the line numbers are
displayed in Panels 2 and 3, indicating where those nodes and parameters are located in the
master model input deck.

Thus, in Figure 1, the “optimize” 3rd level node has been selected. Its sub-nodes are shown in the
Panel 2, and the “Neumann” boundary condition for the “fixmesh” volume relaxer is selected,
with its associated parameters presented in Panel 3.

The Shape Charge Example shown in Figure 1 is 467 lines long. To demonstrate the efficiencies
offered by FLIP in visualizing a model, the input deck lines containing the same nodes and data
displayed in Figure 1 are shown in Figure 2.

FLIP was developed in the scripting language Python Anaconda2 (ver 2.7.11), using the Tkinter
GUI module.

3

Figure 2. Selected lines from the Shaped Charge Example input deck.

Key features of FLIP

FLIP allows the user to easily and efficiently navigate their models using a point-and-click
approach, rather than relying on a text editor.

4

A built-in online help menu is accessible by the keyboard command Control-H. Table I provides
a complete list of keyboard shortcuts presently available in FLIP.

Table I. FLIP’s keyboard shortcuts

Keyboard shortcut Description

Control+H Print the online help in lower-right panel

Control+F Open file browser

Control+C Clear node data from all panels

Control+P Print the entire input deck in lower-right panel

Control+Z Commit edits (to be done after editing each node)

Control-S Save all committed edits to a modified file

Left/Right Arrows Navigate between the panels

Escape Quit FLIP

FLIP handles both FLAG “mk +”, “cd” shortcut commands, and automatically imports the
contents of “include” files to produce a master model. This model’s input deck may be viewed it
its entirety by using the Control+P shortcut.

FLIP also provides an editing capability. Nodes, parameters, and variables that are displayed in
Panel 3 may be directly edited by the user. Upon making any changes, the keyboard shortcut
Control+Z commits those edits to a new master model. This process may be repeated until all of
the desired edits are complete. Control-S saves all committed changes to a modified file, with
“_modX” appended to it’s filename, where X is an increasing integer representing increasing
versions of modified files. FLIP does not overwrite the original file.

In addition to editing variables and parameters, FLIP also allows the user to add additional nodes
and associated parameters and variables. An example is shown in Figure 2, where we add a
GNU Plot output node and a desired file path in the lower right panel. The “x” indicates to FLIP
that this line is to be added to a new master model. After committing the changes and saving the
model to a new mod file, Figure 3 shows the new output node and it’s content within the model
database.

5

Figure 3. Demonstration of FLIP’s editing capability. In this example, a gnuplot output node
and event scheduler command are added. The “x” in the first column is required when adding
new lines, and node/parameters must begin after the 8th column. When committed and saved,
these changes appear in a modified master model input deck (shown in Figure 4).

Figure 4. The modified master model now includes the nodes and parameters for the gnuplot
node.

Four color display schemes are available for FLIP users, as described in Table II. The syntax for
launching FLIP with, for example, color scheme 3 is flip.py -c 3.

6

Table II. Color schemes available in FLIP.

Color scheme Background Foreground Line Numbers
1 Dark grey Black Dark blue
2 Light grey Black Dark blue
3 Black Grey Yellow
4 White Black Grey

Conclusions

FLIP provides FLAG users with a means of efficiently reviewing, debugging, and editing their
models with an organized, easily navigable user interface. FLIP is available on the High
Performance Computing (HPC) machines in the following directory:
/yellow/users/hasani/public/flip.

Acknowledgements

The authors would like to acknowledge and thank the beta test users James Hill (XCP-3), David
Becker (XTD-PRI), Von Whitley (XTD-SS), Eugene Dougherty (XTD-PRI), and Lori Pritchett-
Sheats (XTD-PRI) for feedback and helpful suggestions.

References

1. Hill, J., “FLAG User’s Manual,” LA-CP-16-20334, Los Alamos National Laboratory
report, 2017.

2. www.python.org

